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Abstract

The incorporation of qualitative information into tracgisystems is a chal-
lenging topic of research in the computer vision area. Withie context
of an outdoor scenario, it is usual to find some patterns ofdmumotion
and, in general there is a reduced set of typical entrancexibgoints. In
this work we present a method to analyze an existing set jgfct@ies ob-
tained in a selected outdoor environment. Trajectoriechrgtered based
on their entrance and exit points in order to model protagyihat are used
to on-line estimate the development of a new trajectory. s€hmrototypes
are modeled using spline curves to avoid the inaccuracggditbm the vi-
sion system. Interesting applications comprise abnormlaabior detection,
spatio—temporal event analysis and nd semantic intetpmataf human be-
havior based on the context.

1 Introduction

The contemporary ubiqu ity of surveillance cameras reguatgomated methods of video
analysis to exploit the resulting data. With traffic anadysiports commentary, site secu-
rity and care for the elderly as a few examples, the numbepplication domains and
their respective setting is legion, and hence demandsiadaptategies to classify the ac-
tivity in the scene. These can be found for varying resoiuléwels, e.g. facial expression,
a given human action, or — in this work — the trajectories efabents in the scene, i.e. the
location and velocity of targets such as vehicles or pedestwhile under surveillance.

Scene activity analysis is an active field of research, tieguin many properties ex-
tracted from the agent’'s movement in the scene [11, 6, 7].uBeeof this extracted data
is twofold. Primarily, the data is fed back to aid the lowerdktracking system. For
example the entry and exit points in the supervised are#, asicloors, tunnels, support
initialisation and termination of tracks and facilitatesasiation of agents across disparate
fields of view of multiple cameras. Typical trajectorieslietscene are recoverd and then
aid in reestablishment of correspondence after loss dktfvaclusion. The second use is
the interpretation of the observed behaviour, where estity?ones, junctions, paths and
stop zones are labeled accordingly. This information is theel to higher levels of the
system, for example into natural language generators|[8].

However, little work has been done on exploiting the predictapabilities of these
identified attributes. With regard to the complexity of heglevel reasoning, where deci-
sions demand longer processing time [8], a good predictidéarget movement is vital.



The focus of this work lies not on classification of the obseértaehaviour, i.e. events
that have passed already, but on facilitating a pro-actéesaning, to possibly prevent or
predict future collisions. For this, we present a novel radtbf obtaining entry and exit
points, which are then used to find protoype trajectoriesden these points, along with
their uncertainty. These trajectories come in the forniotedf piecewise continuous B-
splines. Their properties allow an elegant yet simple astjon of a target’s future motion
and its accompanying uncertainty. We demonstrate thisadedh a variety of real life
scenarios.

The reminder of this paper is structured as follows. In thet section, we detail
the related work, highlighting key differences to our agmio. In section 3, we explain
the algorithm in detail, and show the performance in cersagnarios in section 5. The
paper finishes with conclusion and discussion of the resbitained and an outlook on
the future work.

2 Related Work

Several approaches faced this problem for the traffic domdwhnson and Hogg [5]
trained a neural network to generate a probabilistic mapsaleaario, assigning a proba-
ble direction to each pixel in the image plane. Fernyhougt.d8] proposed a method to
learn and classify semantic regions from a scenario. Thiso@eh recognizes common
paths by extending trajectories with the spatial extentiptad by the agents in camera
coordinates. Although the method does not need any a—pnimimation, it requires
full trajectories and cannot handle on-line learning. Iditon, this method does not
use orientation to compute paths and thus does not distindpgitween objects following
the same route but different directions. The lack of conegidabelling of the scenario
is addressed by Makris and Ellis in [7], learning entry/eedhes and routes from tra-
jectory samples. However, our contribution is focused miy in acquiring qualitative
information from the environment, but we use this inforraatio on—line estimate the
development of a currently tracked trajectory.

3 Learning Trajectory Prototypes

The procedure described in this section processesla=s€lt;, . .., ty} of human trajecto-
ries, defined as the sequence of ground—plane positiongiecidoy a human agent over in
each time step, hente= {(x1,¥1),-.., (Xm,Ym)}. These trajectories have been obtained
using a computer vision framework, consisting of a caliédatamera and a tracking sys-
tem. The latter is in charge of obtaining the trajectory dawates in the image—plane,
and the former ensures the translation of the trajectontesground—plane coordinates.

3.1 Human Trajectory Acquisition

The architecture of the tracking algorithm used to obtaifetitories [9] is based on back-
round subtraction with group identification and structured a modular and hierarchically-
organized system, see [9] for further details. Using a caneatibration process, the
ground—plane representation of the tracked trajectaiebtained, as shown in Fig. 1.(b).



Figure 1: Trajectories depicted over the image plane. (lou@d plane representation of
the trajectories and the clustered start points (blue egdiand end points (green circles).

In the remaining of the paper, all references to a distan@saore will refer to the 2D eu-
clidean distance.

3.2 Clustering start and end points

Aregionr of the scenario is considered to bestart of endpoint if the observation of the
training trajectory set concludes that a non—trivial numiferajectories begin or end in
that points. To this end, the first positions of the trajecg®mt are clustered to find the start
points. For clarity purposes, we only explain in this settimw to find the start points,
and the same procedure is followed to find the end points, $inguhe last positions of
the trajectory set.

The objective is to find a sé which contains the start points to the scenario. The
fact that the exact number of start points is unknown befamdidiscourages the use of
parameter—specific clustering algorithms likemeans, although research done in that
subject [1]. In order to avoid specifying the number of ahust theQuality Threshold
(QT) clustering algorithm [4] has been used. The clustegizpsed on a spatial measure,
diameter to establish the maximum distance between points thahgetthe same clus-
ter. In our case , since the scenario has been calibratedaadtbries are described in
ground—plane coordinates, the distances between stats@oe expressed in real-world
units, i.e. meters. Using this information, we establislistatice constraird, expressed
in meters, which describes the maximum distance allowedd®t two start points to
belong to the same cluster.

S={s1,...,.%}
S - {t]_7 e ’tm}7vtpl¢tq1€3diSt(tpl’tql) S D (1)
Following Eq. 1, the QT-clustering algorithm outputs thé Sewhich separates the
training trajectory seT into k disjoint subsets. In each subsgtthe initial trajectory
positions {y, ... ,ty,, in Eq. 1) must be separated by a maximum distdb¢ealledcom-
plete linkageclustering). Afterwards, a centroid is computed for eadbssts; by simply
computing the average point from the point §&t, ..., tm}.

Cs = {Cg,.--,Cs}
& = Ytes/k} )
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Figure 2: The speed vectors completely determine the curtleecspline between the
points pp and p;. In these two samples it can be seen how to obtain differdimespby
just varying the derivative vectors.

In spite of being computationally more expensive than othestering algorithms like
k-means, the benefit obtained avoiding setting predefineghpeters allows the system
to be adaptable to changes in the environment. Since theethans expressed as the
maximum distance between points of the same cluster, trextek start / end points
could be larger or smaller, depending on the selected socenar

After applying the QT-clustering of the start and end pointthe training trajectory
set, two set€s = {Cs,,...,Cs } andCg = {Cg,, ..., Cq }. Finally, the training trajectory set
T is splitted intok x | subsets, each of them being identified by a start and an end poi

3.3 Trajectory Prototypes

Each of the subsets mentioned above corresponds to théspajy € Cs x Ce. Thus, the
trajectories contained in the subset represenbtiservedpaths that the tracked agents
have taken to reach the end pogjthaving entered the scenario from start pantA
combination of these trajectories will allow to createaectory prototypei.e., a model
of the trajectory that is usually performed to go from thetspint 5 to the end point
sj. Nonetheless, the trajectories contained in the subsdd tusignificantly different,
even when the tracked agent has walked over the same arda thithscenario. This
could be provoked either by computer vision issues like meag errors or by the ve-
locity and body motion performed by the agent during histexise in the scenario. In
order to solve the aforementioned problems, the trajextcare converted into a spline
representation[2]. The main advantage over the initialcstre of the trajectory is that
the spline acts as a continuous function which takes valgms [0...1], allowing to
sample points with any required precision, getting rid & thaccuracy pulled from the
tracking system.

The spline representation of a trajectdre {(x1,y1),...,(Xn,Yn)} has to deal with
the features of human motion, i.e.,complex curve shapésrtiggnt be modeled. Hence,
a simple spline is not a representation robust enough to hadidiypes of trajectories.
Instead, we propose to use a concatenation of simple spitas calledB-splineg as
the best representation. Thus, the spline representdtiprcalledsp(t), will be sp(t) =
{bsp,...,bsp}.

In order to ease the notation, let us consider that one besptiodels a segment of a
trajectory, e.Xp, ..., Xq}. The construction of the b-spline needs of two control gt
and p1, which coincide with the starting and ending point of tharsplcurve. However,
the curvature of the spline is determined by #peedin the entrance and exit of the
spline, see Fig. 2. This speed is represented by two norethlizctors/g andvs, i.e.
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Figure 3: Computing the derivatives for a simple b-splindne Bverage of the vectors
formed bypg and the subsequent trajectory points are normalized tarotht@ derivative
of the spline inpg. The same is done fgy, and that derivative is kept equal for the next
spline.
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Figure 4. Example of trajectories fitted to splines. Trajegtpoints are more separated
in the left graphic because it represents a smaller region.

the derivatives of the spline in the poingg and p;. These two vectors are obtained
considering the vectors between the poipgsand p; and their successor points in the
trajectory and computing the average, see Fig. 3(b). In thedi the vectors; andv,
are obtained by joiningy with the next two positions in the trajectory. The more vesto
are used to compute the derivatives, the better the b-spliheepresent the sequence of
positions{xp,...,Xq}. In the case oy, the points required to construct the vectess
andv, are taken from the next part of the trajectory to be modeldtisTthe derivative
obtained fomp; at the present b-spline will be the same as thapfdn the b-spline for the
next trajectory segment. This fact allows to obtain a cargirs and smooth concatenation
of b-splines.

LetTi; = {11,..., Tq} be the trajectories fror that begin in the start poist and finish
at the end poing;. In order to generate their spline representation, thercbpbints,
i.e. those which separate the b—splines, are chosen toamamtspatial and temporal
consistency between each b—spline. To this end, the spiesreated using control
points and thu¥K — 1 b—splines. This parametKris fixed for all the trajectories in the
sameTjj, so their splines can be sampled obtaining the same propatipoints. Fig. 4
shows example trajectories and their conversion to theepépresentation.

The resulting spline$sp(11),...,Sp(1q) } are then sampled to obtahpoints of each
b—spline:

SAMPLESP(T1)) = [P1y;- Pig, o]



SAMPLHSFXTQ)) = [pq17"'7qu*(K—l)] (3)

Finally, the prototype trajectory is generated by computime average of each tuple
[Ply>---» Pgqel, 0 € [1...Dx (K —1)] from the previous sequences. A new splf)ds then
fit to the resulting sequence, usikgcontrol points as done with the previous splines. This
result constitutes theommorpath between the start poigtand the end poirg; and will
in the next section to measure how likely it is that an ageits e scenario bg; given
the fact that comes from.

4 Uncertainty Measuring

The objective is to measure the uncertainty issued by thramce of a new target in the
scene, and how its development within the ground—plane tenagguess about where
the agent will be in the future time steps.

Lett, = {(x1,y1),-..,(Xu,Yu)} be the trajectory of a new agent that has been tracked
within the ground—plane until time stgp. Considering the initial position dof,, we
estimate its start poirg, by choosing the closest start point from the start poBys
Let {P.1,...,P, g} be the prototypes that begin at the start paint Additionally,
let {ci‘e,...,cfﬁgl} be the control points that were used to geneftg, being 8 €
[1...]|E]]].

The uncertainty at time stgpis measured in terms of the distance between the posi-
tion (x,,yu) and each of the above defined prototypes. Although theré meithods to
compute the closest point on a spline curve, e.g. [10], thegt#l computationally expen-
sive and, however, the control points of the spline servesisplified distance measure
that does not dramatically affect the final result. Therefohe distance is measured to
one control point of each prototype. The control points &@sen in order, beginning at
the nearest point ts.. The current control point;l’,e is replaced by the next if:

diSt({CZ,ea(Xuayu)}) > diSt({C}:’e,(X“,l,y“,l)})
AND

dist({c! g, (xu.y)}) > dist({c G (s 1. Ypusn) H) 4)

Finally, {dﬁl, el dﬂ“E“} are the distances frofx,, y,,) to the prototypes at time step

. Also, we consider the distancgB;,...,Djg } from the current control point to the
end point, passing through all the intermediate contrah{soi

Dg = ¥ dist(c! 5,c/5') (5)
4 07 7%,
With these measures we compute the probab#iis|(x,,y,)) that the agent finishes
its trajectory in the end poirge {1,...,||E||} given the current position:
_ |De| —dfe

P(el(Xu,yu)) =1 (6)

[Del
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Figure 5: (a) Evolution of the distance between the expeartaldrajectoryt; w.r.t. the
trajectory prototypes and the possible ending points. (mluion of the probabilities
for the experimental trajectory to end in each of the detketed points. The highlighted
graphic represents the final end point of the trajectory.

5 Reaults

Experiments have been run in the urban outdoor scenarainted in previous sections.
This scenario is specially interesting due to the fact tbaegl start and end points can
be found, some of them very close. Also, these points are eyt nestricted and there
are not phisical obstacles that impede to reach one end fsomtone of the a—priori
expected start point.

We have processed a set of 200 complete trajectories otitasieg one day of con-
tinuous recording. The training process takes about 5 r@iat cluster the start and end
points and the probability estimation has been achievedaf-time, running 25 frames
per second.

After clustering the training set, the proposed distancd @mcertainty measure is
tested with new trajectories. Results can be observed in Fi@), where the distance
with the splines is shown over time, and in Fig. 5.(b), shgputtre estimated probabilities
of reaching one of the detected end points. In the initiahfg, all the prototypes are very
close to the current position, but it can be seen that whetralectory develops within
the scenario, it keeps following one of the prototypes.

6 Conclusions

In this work we have presented a method to analyze an existingf trajectories, obtained
by a tracking system in a selected outdoor environment. Ehese we have obtained the
most frequent entrance and exit points and then trajestbeaee been clustered in order to
model trajectory prototypes that have been applied to na-dstimate the development of
a new trajectory. The prototypes have been modeled usimespiurves in order to avoid
the inaccuracy pulled from the vision system. We have coetpthie probabilities for a
new trajectory to leave the scenario through a detectegbeiit, given the entrance point
and the current trajectory position. The results shown énpifevious section are promis-
ing, because they allow to improve two areas that are stitesearch. On the one hand,



the probability estimation can be a useful feedback to theking system when dealing
with long occlusions or cluttered environments. On the ottend, these predictions are
helpful towards high-level reasoning about human behawittiin the environment.
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