
Finding Prototypes to Estimate Trajectory
Development in Outdoor Scenarios

Pau Baiget*, Eric Sommerlade+, Ian Reid+, Jordi Gonzàlez*
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Abstract

The incorporation of qualitative information into tracking systems is a chal-
lenging topic of research in the computer vision area. Within the context
of an outdoor scenario, it is usual to find some patterns of human motion
and, in general there is a reduced set of typical entrance andexit points. In
this work we present a method to analyze an existing set of trajectories ob-
tained in a selected outdoor environment. Trajectories areclustered based
on their entrance and exit points in order to model prototypes that are used
to on–line estimate the development of a new trajectory. Those prototypes
are modeled using spline curves to avoid the inaccuracy pulled from the vi-
sion system. Interesting applications comprise abnormal behavior detection,
spatio–temporal event analysis and nd semantic interpretation of human be-
havior based on the context.

1 Introduction

The contemporary ubiqu ity of surveillance cameras requires automated methods of video
analysis to exploit the resulting data. With traffic analysis, sports commentary, site secu-
rity and care for the elderly as a few examples, the number of application domains and
their respective setting is legion, and hence demands adaptive strategies to classify the ac-
tivity in the scene. These can be found for varying resolution levels, e.g. facial expression,
a given human action, or – in this work – the trajectories of the agents in the scene, i.e. the
location and velocity of targets such as vehicles or pedestrians while under surveillance.

Scene activity analysis is an active field of research, resulting in many properties ex-
tracted from the agent’s movement in the scene [11, 6, 7]. Theuse of this extracted data
is twofold. Primarily, the data is fed back to aid the lower level tracking system. For
example the entry and exit points in the supervised area, such as doors, tunnels, support
initialisation and termination of tracks and facilitate association of agents across disparate
fields of view of multiple cameras. Typical trajectories in the scene are recoverd and then
aid in reestablishment of correspondence after loss of track/occlusion. The second use is
the interpretation of the observed behaviour, where entry/exit zones, junctions, paths and
stop zones are labeled accordingly. This information is then fed to higher levels of the
system, for example into natural language generators[8].

However, little work has been done on exploiting the predictive capabilities of these
identified attributes. With regard to the complexity of higher level reasoning, where deci-
sions demand longer processing time [8], a good prediction of target movement is vital.



The focus of this work lies not on classification of the observed behaviour, i.e. events
that have passed already, but on facilitating a pro-active reasoning, to possibly prevent or
predict future collisions. For this, we present a novel method of obtaining entry and exit
points, which are then used to find protoype trajectories between these points, along with
their uncertainty. These trajectories come in the formulation of piecewise continuous B-
splines. Their properties allow an elegant yet simple acquisition of a target’s future motion
and its accompanying uncertainty. We demonstrate this method on a variety of real life
scenarios.

The reminder of this paper is structured as follows. In the next section, we detail
the related work, highlighting key differences to our approach. In section 3, we explain
the algorithm in detail, and show the performance in certainscenarios in section 5. The
paper finishes with conclusion and discussion of the resultsobtained and an outlook on
the future work.

2 Related Work

Several approaches faced this problem for the traffic domain. Johnson and Hogg [5]
trained a neural network to generate a probabilistic map of ascenario, assigning a proba-
ble direction to each pixel in the image plane. Fernyhough etal. [3] proposed a method to
learn and classify semantic regions from a scenario. This approach recognizes common
paths by extending trajectories with the spatial extent occupied by the agents in camera
coordinates. Although the method does not need any a–prioriinformation, it requires
full trajectories and cannot handle on–line learning. In addition, this method does not
use orientation to compute paths and thus does not distinguish between objects following
the same route but different directions. The lack of conceptual labelling of the scenario
is addressed by Makris and Ellis in [7], learning entry/exitzones and routes from tra-
jectory samples. However, our contribution is focused not only in acquiring qualitative
information from the environment, but we use this information to on–line estimate the
development of a currently tracked trajectory.

3 Learning Trajectory Prototypes

The procedure described in this section processes a setT = {t1, . . . ,tn} of human trajecto-
ries, defined as the sequence of ground–plane positions occupied by a human agent over in
each time step, henceti = {(x1,y1), . . . ,(xm,ym)}. These trajectories have been obtained
using a computer vision framework, consisting of a calibrated camera and a tracking sys-
tem. The latter is in charge of obtaining the trajectory coordinates in the image–plane,
and the former ensures the translation of the trajectories into ground–plane coordinates.

3.1 Human Trajectory Acquisition

The architecture of the tracking algorithm used to obtain trajectories [9] is based on back-
round subtraction with group identification and structuredinto a modular and hierarchically-
organized system, see [9] for further details. Using a camera calibration process, the
ground–plane representation of the tracked trajectories is obtained, as shown in Fig. 1.(b).
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Figure 1: Trajectories depicted over the image plane. (b) Ground plane representation of
the trajectories and the clustered start points (blue squares) and end points (green circles).

In the remaining of the paper, all references to a distance measure will refer to the 2D eu-
clidean distance.

3.2 Clustering start and end points

A regionr of the scenario is considered to be anstartof endpoint if the observation of the
training trajectory set concludes that a non–trivial number of trajectories begin or end in
that points. To this end, the first positions of the trajectory set are clustered to find the start
points. For clarity purposes, we only explain in this section how to find the start points,
and the same procedure is followed to find the end points, but using the last positions of
the trajectory set.

The objective is to find a setE which contains the start points to the scenario. The
fact that the exact number of start points is unknown beforehand discourages the use of
parameter–specific clustering algorithms likek–means, although research done in that
subject [1]. In order to avoid specifying the number of clusters, theQuality Threshold
(QT) clustering algorithm [4] has been used. The clusteringis based on a spatial measure,
diameter, to establish the maximum distance between points that belong to the same clus-
ter. In our case , since the scenario has been calibrated and trajectories are described in
ground–plane coordinates, the distances between start points are expressed in real–world
units, i.e. meters. Using this information, we establish a distance constraintD, expressed
in meters, which describes the maximum distance allowed between two start points to
belong to the same cluster.

S= {s1, . . . ,sk}

si = {t1, . . . ,tm},∀tp1 ,tq1∈si dist(tp1,tq1) ≤ D (1)

Following Eq. 1, the QT-clustering algorithm outputs the set S, which separates the
training trajectory setT into k disjoint subsets. In each subsetsi , the initial trajectory
positions (t11, . . . ,t1m in Eq. 1) must be separated by a maximum distanceD (calledcom-
plete linkageclustering). Afterwards, a centroid is computed for each subsetsi by simply
computing the average point from the point list{t1, . . . ,tm}.

CS = {cs1, . . . ,csk}

csi = ∑ t j ∈ si/k} (2)
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Figure 2: The speed vectors completely determine the curve of the spline between the
points p0 andp1. In these two samples it can be seen how to obtain different splines by
just varying the derivative vectors.

In spite of being computationally more expensive than otherclustering algorithms like
k-means, the benefit obtained avoiding setting predefined parameters allows the system
to be adaptable to changes in the environment. Since the diameter is expressed as the
maximum distance between points of the same cluster, the detected start / end points
could be larger or smaller, depending on the selected scenario.

After applying the QT-clustering of the start and end pointsin the training trajectory
set, two setsCS= {cs1, . . . ,csk} andCE = {ce1, . . . ,cel }. Finally, the training trajectory set
T is splitted intok× l subsets, each of them being identified by a start and an end point.

3.3 Trajectory Prototypes

Each of the subsets mentioned above corresponds to the pair(si ,ej) ∈CS×CE. Thus, the
trajectories contained in the subset represent theobservedpaths that the tracked agents
have taken to reach the end pointej having entered the scenario from start pointsi . A
combination of these trajectories will allow to create atrajectory prototype, i.e., a model
of the trajectory that is usually performed to go from the start point si to the end point
sj . Nonetheless, the trajectories contained in the subset could be significantly different,
even when the tracked agent has walked over the same area within the scenario. This
could be provoked either by computer vision issues like measuring errors or by the ve-
locity and body motion performed by the agent during his existence in the scenario. In
order to solve the aforementioned problems, the trajectories are converted into a spline
representation[2]. The main advantage over the initial structure of the trajectory is that
the spline acts as a continuous function which takes values from [0. . .1], allowing to
sample points with any required precision, getting rid of the inaccuracy pulled from the
tracking system.

The spline representation of a trajectoryt = {(x1,y1), . . . ,(xn,yn)} has to deal with
the features of human motion, i.e.,complex curve shapes that might be modeled. Hence,
a simple spline is not a representation robust enough to model all types of trajectories.
Instead, we propose to use a concatenation of simple splines(also calledB-splines) as
the best representation. Thus, the spline representation of t, calledsp(t), will be sp(t) =
{bsp1, . . . ,bspd}.

In order to ease the notation, let us consider that one b-spline models a segment of a
trajectory, e.g{xp, . . . ,xq}. The construction of the b-spline needs of two control points p0

andp1, which coincide with the starting and ending point of the spline curve. However,
the curvature of the spline is determined by thespeedin the entrance and exit of the
spline, see Fig. 2. This speed is represented by two normalized vectorsv0 andv1, i.e.
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Figure 3: Computing the derivatives for a simple b-spline. The average of the vectors
formed byp0 and the subsequent trajectory points are normalized to obtain the derivative
of the spline inp0. The same is done forp1, and that derivative is kept equal for the next
spline.
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Figure 4: Example of trajectories fitted to splines. Trajectory points are more separated
in the left graphic because it represents a smaller region.

the derivatives of the spline in the pointsp0 and p1. These two vectors are obtained
considering the vectors between the pointsp0 and p1 and their successor points in the
trajectory and computing the average, see Fig. 3(b). In the figure, the vectorsv1 andv2

are obtained by joiningp0 with the next two positions in the trajectory. The more vectors
are used to compute the derivatives, the better the b-splinewill represent the sequence of
positions{xp, . . . ,xq}. In the case ofp1, the points required to construct the vectorsv3

andv4 are taken from the next part of the trajectory to be modeled. Thus, the derivative
obtained forp1 at the present b-spline will be the same as that forp0 in the b-spline for the
next trajectory segment. This fact allows to obtain a continuous and smooth concatenation
of b-splines.

LetTi j = {τ1, . . . ,τq} be the trajectories fromT that begin in the start pointsi and finish
at the end pointej . In order to generate their spline representation, the control points,
i.e. those which separate the b–splines, are chosen to maintain a spatial and temporal
consistency between each b–spline. To this end, the splinesare created usingK control
points and thusK −1 b–splines. This parameterK is fixed for all the trajectories in the
sameTi j , so their splines can be sampled obtaining the same proportion of points. Fig. 4
shows example trajectories and their conversion to the spline representation.

The resulting splines{sp(τ1), . . . ,sp(τq)} are then sampled to obtainD points of each
b–spline:

SAMPLE(sp(τ1)) = [p11, ..., p1D∗(K−1)
]



...

SAMPLE(sp(τq)) = [pq1, ..., pqD∗(K−1)
] (3)

Finally, the prototype trajectory is generated by computing the average of each tuple
[p1α , . . . , pqα ],α ∈ [1. . .D∗(K−1)] from the previous sequences. A new splinePi j is then
fit to the resulting sequence, usingK control points as done with the previous splines. This
result constitutes thecommonpath between the start pointsi and the end pointej and will
in the next section to measure how likely it is that an agent exits the scenario byej given
the fact that comes fromsi .

4 Uncertainty Measuring

The objective is to measure the uncertainty issued by the entrance of a new target in the
scene, and how its development within the ground–plane can give a guess about where
the agent will be in the future time steps.

Let t∗ = {(x1,y1), . . . ,(xµ ,yµ)} be the trajectory of a new agent that has been tracked
within the ground–plane until time stepµ . Considering the initial position oft∗, we
estimate its start points∗ by choosing the closest start point from the start pointsCS.
Let {P∗,1, . . . ,P∗,||E||} be the prototypes that begin at the start points∗. Additionally,
let {c1

∗,θ , . . . ,cK−1
∗,θ } be the control points that were used to generateP∗,θ , being θ ∈

[1. . . ||E||].
The uncertainty at time stepµ is measured in terms of the distance between the posi-

tion (xµ ,yµ) and each of the above defined prototypes. Although there exist methods to
compute the closest point on a spline curve, e.g. [10], they are still computationally expen-
sive and, however, the control points of the spline serve as asimplified distance measure
that does not dramatically affect the final result. Therefore, the distance is measured to
one control point of each prototype. The control points are chosen in order, beginning at
the nearest point tos∗. The current control point,cγ

∗,θ is replaced by the next if:

dist({cγ
∗,θ ,(xµ ,yµ)}) > dist({cγ

∗,θ ,(xµ−1,yµ−1)})

AND

dist({cγ
∗,θ ,(xµ ,yµ)}) ≥ dist({cγ+1

∗,θ ,(xµ+1,yµ+1)}) (4)

Finally,{dµ
∗,1, . . . ,d

µ
∗,||E||} are the distances from(xµ ,yµ) to the prototypes at time step

µ . Also, we consider the distances{D1, . . . ,D||E||} from the current control point to the
end point, passing through all the intermediate control points:

Dθ = ∑
γ

dist(cγ
∗,θ ,cγ+1

∗,θ ) (5)

With these measures we compute the probabilityP(e|(xµ ,yµ)) that the agent finishes
its trajectory in the end pointe∈ {1, . . . , ||E||} given the current position:

P(e|(xµ ,yµ)) = 1−
|De|−dµ

∗,e

|De|
(6)
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Figure 5: (a) Evolution of the distance between the experimental trajectoryt1 w.r.t. the
trajectory prototypes and the possible ending points. (b) Evolution of the probabilities
for the experimental trajectory to end in each of the detected end points. The highlighted
graphic represents the final end point of the trajectory.

5 Results

Experiments have been run in the urban outdoor scenario introduced in previous sections.
This scenario is specially interesting due to the fact that several start and end points can
be found, some of them very close. Also, these points are not very restricted and there
are not phisical obstacles that impede to reach one end pointfrom one of the a–priori
expected start point.

We have processed a set of 200 complete trajectories obtained using one day of con-
tinuous recording. The training process takes about 5 minutes to cluster the start and end
points and the probability estimation has been achieved in real–time, running 25 frames
per second.

After clustering the training set, the proposed distance and uncertainty measure is
tested with new trajectories. Results can be observed in Fig. 5.(a), where the distance
with the splines is shown over time, and in Fig. 5.(b), showing the estimated probabilities
of reaching one of the detected end points. In the initial frames, all the prototypes are very
close to the current position, but it can be seen that when thetrajectory develops within
the scenario, it keeps following one of the prototypes.

6 Conclusions

In this work we have presented a method to analyze an existingset of trajectories, obtained
by a tracking system in a selected outdoor environment. Fromthese we have obtained the
most frequent entrance and exit points and then trajectories have been clustered in order to
model trajectory prototypes that have been applied to on–line estimate the development of
a new trajectory. The prototypes have been modeled using splines curves in order to avoid
the inaccuracy pulled from the vision system. We have computed the probabilities for a
new trajectory to leave the scenario through a detected exitpoint, given the entrance point
and the current trajectory position. The results shown in the previous section are promis-
ing, because they allow to improve two areas that are still onresearch. On the one hand,



the probability estimation can be a useful feedback to the tracking system when dealing
with long occlusions or cluttered environments. On the other hand, these predictions are
helpful towards high-level reasoning about human behaviorwithin the environment.
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